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Abstract. The problem of minimizing the number of misclassified points by a plane, attempting to 
separate two point sets with intersecting convex hulls in n-dimensional real space, is formulated 
as a linear program with equilibrium constraints (LPEC). This general LPEC can be converted to 
an exact penalty problem with a quadratic objective and linear constraints. A Frank-Wolfe-type 
algorithm is proposed for the penalty problem that terminates at a stationary point or a global 
solution. Novel aspects of the approach include: (i) A linear complementarity formulation of the 
step function that "counts" misclassifications, (ii) Exact penalty formulation without boundedness, 
nondegeneracy or constraint qualification assumptions, (iii) An exact solution extraction from the 
sequence of minimizers of the penalty function for a finite value of the penalty parameter for the 
general LPEC and an explicitly exact solution for the LPEC with uncoupled constraints, and (iv) 
A parametric quadratic programming formulation of the LPEC associated with the misclassification 
minimization problem. 

Key words: Linear separation, equilibrium constraints, bilinear program, exact penalty. 

1. Introduction 

We consider the fundamental problem of  machine learning of  discriminating 
between the elements of  two point sets r and B in the n-dimensional real space R ~. 
These sets are represented by the rn • n and k • n matrices A and B respectively. 
When the convex hulls of  ,A and B are disjoint, a single linear program [14, 4] or 
the classical iterative perceptron algorithm [20, 9] will obtain a separating plane 
in a finite number  of  steps. In the general and usual case of  intersecting convex 
hulls, the perceptron algorithm merely obtains a bounded sequence of  iterates [7]. 
However,  the linear programming formulation [4] obtains an approximate separat- 
ing plane that minimizes some norm of  the distances of  misclassified points to the 
approximate separating plane. Although this approach has been quite successful in 
important real world applications [18, 21] and in the training of  neural networks 
[3], the approximate separating plane does not minimize the number  of  misclassi- 
fled points, as do some machine learning approaches [19]. In neural networks [12], 
misclassification minimization is achieved by using the sigmoid error function 
1/(1 + e-aX) ,  with a positive a ,  to approximate a step function. Hence, minimiza- 
tion of  the sum of  distances of  misclassified points by a linear program is merely 
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a surrogate for misclassification minimization. In the present work, we propose a 
precise mathematical programming formulation of the nonconvex problem of min- 
imizing the number o f  misclassified points. This is done in Section 2 where we first 
propose a simple linear complementarity formulation of the step function (Lemma 
2.1) and then use this result to formulate the misclassification minimization as a 
linear program with an equilibrium (linear complementarity) constraint (Proposi- 
tion 2.2). This LPEC is an important special case of mathematical programs with 
equilibrium constraints (MPEC) [11, 1] studied comprehensively recently in [13]. 
Section 3 deals with methods for solving a general LPEC. We convert our LPEC 
to an exact penalty problem and show (Theorem 3.2) that for a finite value of the 
penalty parameter an exact solution of the LPEC is contained in a minimizer of 
the penalty problem. Corollary 3.3 shows how to extract an exact solution from 
two minimizers of the penalty function. In Algorithm 3.4 we show how to solve 
the bilinear program, that constitutes the penalty problem, by a Frank-Wolfe type 
algorithm and establish its convergence in Theorem 3.5. In Section 4 we specialize 
to an LPEC with uncoupled equilibrium constraints (LPUEC) (32) which covers 
the misclassification minimization problem (12). Theorem 4.1 gives an explicitly 
exact penalty solution of this problem without any boundedness assumption that 
was required for the less general Stackelberg problem [2]. We propose Algorithm 
4.2 as a finite stepless partial Frank-Wolfe algorithm for solving this problem. Its 
finite termination to an exact solution or a stationary point is established in The- 
orem 4.3. This algorithm is proposed for the solution of the parametric quadratic 
programming reformulation (40) of the misclassification minimization problem 
(12). This quadratic reformulation is proposed in order to overcome the stationari- 
ty of the penalty function for (12) at certain feasible points. Section 5 of the paper 
concludes with some brief remarks. 

A word about our notation now. For a vector z in the n-dimensional real space 
R '~, x+ will denote the vector in R ~ with components (x+)i := max {xi, 0}, i = 
1 , . . . ,  n. Similarly x ,  will denote the vector in R n with components (x,)i  := 
(xi) , ,  i = 1 , . . . ,  n , where 0 ,  is the step function defined in (4) below. The 
notation A E R m • ~ will signify a real rn • n matrix. For such a matrix, A T will 
denote the transpose while Ai will denote row i. For two vectors x and y in R n, 
xy  will denote the scalar product, while x _1_ y will denote xy  = 0. A vector of 
ones in a real space of arbitrary dimension will be denoted by e. The notation 
arg minxes f ( x )  will denote the set of minimizers of ] (x )  on the set S, while the 
notation arg ver tex  part ial  minxes f ( x )  will denote the set of vertices of S that 
approximately minimize f on S, and in particular any vertex of S may be taken to 
be in this set. The empty set, as well as an empty vector will be denoted by 0. 
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2. Misclassification Minimization as a Linear Program with Equilibrium 
Constraint (LPEC) 

When the point sets A and B, represented by the m x n and k x n matrices A and 
B respectively have disjoint convex hulls, they can be strictly separated [14] by a 
plane 

w x  = "y (1) 

in R ~ where w is some weight vector constituting the normal to the separating 
plane and "? locates the plane relative to the origin. The plane (1) separates the sets 
.A and B by the strict inequalities 

A w  > eT, e7 > B w ,  (2) 

where e is a vector of ones of appropriate dimension. The system (2), upon nor- 
malization, is equivalent to 

A w  - eT - e >_ 0, - B w  + eT - e > O. (3) 

Inequalities (3) state that the points A~, i = 1 , . . . ,  m, lie in the open halfspace 
{x l xw  > 7} in R n, while the points Bi, i = 1 , . . . ,  k, lie on the open halfspace 
{x l xw  < 7} in R n. If we define the step function 0 ,  " R --+ R as 

1 if ~ > 0 
(~ )*=  0 if ~ < 0 ,  

(4) 

then the system (3) is equivalent to 

e ( - A w  + e7 + e), + e (Bw - e7 + e), = 0. (5) 

In fact, the left-hand side of (5) counts the number of misclassified points. For the 
linearly separable case of nonintersecting convex hulls, no points are misclassified, 
and hence the equality in (5) is obtained. In the more general case where the sets of 
Jt  and/3 have intersecting convex hulls, and thus are linearly inseparable, equation 
(5) can be replaced by the minimization problem 

min e ( - A w  + e7 + e), + e (Bw - e7 + e),.  (6) 

This problem has a zero minimum if and only if the plane x w  = 7 strictly separates 
the sets .4 and /3. Otherwise this plane minimizes the number of misclassified 
points, that is it minimizes 

e(w,~/) := cardinality { ( i , j )  [ A iw  - 7 - l < O' - B j w  + 7 - l < O } 
l < i < m ,  l < j < k  . (7) 

We immediately note that (6) is always solvable since there exists only a finite 
number of twofold partitions of.4 (.J/3 that are linearly separable. Any such partition 
that minimizes the number of misclassified points solves (6). Our objective is to 
reduce (6) to a mathematical programming problem. To do that we begin by a 
representation of the step function (4) as a Complementarity condition via the plus 
function 0+  as follows. 
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LEMMA 2.1. Characterization o f  the step function 0*. For r E R m, u E 
R m, a E R m and e, a vector o f  ones in R m : 

(; o+o) 
r = ( a ) , ,  u = a +  -,' ',- = . (8) 

u + u - - e  + 

Proof. The points (a). and (a)+ solve respectively the dual linear programs 

max {arl0 < r < e} and rain ( eu lu  >_ a, u > 0).  (9) 
?" 2b 

The right hand side of the equivalence (8) is merely the Karush-Kuhn-Tucker 
necessary and sufficient optimality conditions for r and u to solve (9), where use 
has been made of the elementary equivalence 

c = d + - ' .  ' . - c - d > _ 0 ,  c>_0, c ( e - d ) = 0  (10) 

for c E R m and d E R "~. 

We now combine Lemma 2.1 and the minimization problem (6) and make use of 
(10), to obtain the following misclassification minimization characterization. 

PROPOSITION 2.2. Misclassification Minimization as a Linear Program with 

Equilibrium Constraints (LPEC). A plane x w  = 7 minimizes the number o f  mis- 

classifications c(w,  "7) as defined by (7) if and only if (w, % r, u, s, v) solves the 
fol lowing linear program with equilibrium constraints: 

minimize er + es 

subject to = r + u - e + (11) 

v s + v - - e  + 

or equivalently 

minimize er + es 

u + A w - e f - e > O  
r > _ O  

subject to r (u + A w  - e~/ - e) = 0 
- r q - e > O  

u > O  
u ( - r  + e) = 0 

v - B w + e ~ / - e > O  
s>_O 

s ( v  - B w  + e~/ - e)  = 0 
- s + e ) _ O  

v ) _ O  
v ( - s  + e)  = 0 

(12) 

We note that problem (12) is a linear program with equilibrium (linear complemen- 
tarity) constraints (LPEC) and is a special case of the more general mathematical 
program with equilibrium constraints (MPEC) studied in detail by Luo, Pang, Ralph 
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and Wu [13]. Being linear, our problem is endowed with some features not pos- 
sessed by the more general MPECs, principally exactness of a penalty formulation 
without boundedness of the feasible region and without assuming nondegeneracy. 
We discuss these properties and an algorithm for solving (12) in the next two 
sections. 

3. Linear Programs with Equilibrium Constraints (LPEC) 

We consider the general LPEC 

minimize c.z + dy 
x~y 

M x + N y + q > O  
subject to x ( M x  + N y  + q) = 0 

x, y > O  

(13) 

where M E R el xgl and N E R ~1 )<g2. Our misclassification minimization problem 
(12) is exactly of this type if we make the identification 

u w t - e ~  - 0 0  0 0 
x =  , y =  5 , = M =  

s 7 5 - ~  ' 0 0 0 I  ' 
v 0 O -  0 

(i) (o) , c =  , d =  0 

0 
, q =  

A - e - A e + e  
0 0 0 

N = - B  e B e -  e 

0 0 0 

(14) 

e 

- e  

e 

We note that in (14), M + M T = 0. Hence M is a skew symmetric positive 
semidefinite matrix, reflecting its linear programming origin (9). We also note that 
the linear objective function of (13) is bounded below by zero on the nonempty 
feasible region when the identifications (14) are made. This motivates the following 
simple existence results for (13). 

THEOREM 3.1. Existence of  Solution for LPEC. A solution to (13) exists i f  it 
is feasible and its objective function is bounded below on its nonempty feasible 
region. 

Proof The nonempty feasible region of (13) consists of the union of a finite 
number of polyhedral sets in R el+gz. Since cx + dy is bounded below on each of 
these polyhedral sets it attains its minimum on each of them and its global minimum 
on their union. E] 

We now convert the LPEC (13) into a penalty problem of minimizing a quadratic 
function on a polyhedral set and show that for sufficiently large but finite value 
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of the penalty parameter an exact solution can be identified. For that purpose it is 
convenient to define the following constraint sets: 

S := {(x, y ) lMx  + N y  + q >_ O, (x, y) >_ O, x ( M x  + N y  + q) = O} 
(15) 

So := {(x,y)IMx + N y  + q >_ O, (x ,y)  >_ 0}. 

We also define the following penalty function 

P((x ,  y), a) := cx + dy + a x ( M x  + N y  + q), a >_ 0 (16) 

We will now show that for a _> ~, for some 5 > 0, minimizing P((x ,  y), a) over 
So will identify an exact solution of the LPEC (13). We state this result as follows. 

THEOREM 3.2. Exactness of LPEC Penalization. Let the feasible region S be 
nonempty and let cx + dy be bounded below on So of(15). There exists 6~ > 0 such 
that for any fixed a >_ 5~ 

= -g + x~~ , for some i E {1, . . .  /}, (17) 
b i i 

where 

(x(a), y(a)) E arg min P((x,y),a). (18) 
(x,u)~So 

Here g and the vectors a i, b ~, x~, y~, i = 1 , . . . ,  g, depend on the LPEC problem 
data only: M,  N,  C, d and q. Furthermore (Xio, y~), i = 1 ,2 , . . . ,  s solve the LPEC 
(13) and such that for any fixed a >_ 

x ( a ) ( M x ( a )  + N y ( a )  + q) = ai(Ma~ + Nb~), forsome i E {1, g} (19) 
~ 2  " " " 

Proof. First note that ex + dy is bounded below on So and x( M x  + N y  + q) > 0 
on So. It follows that the penalty problem of (18) is solvable by some (x (a), y (o~)) 
for each a > 0. Hence for c~ > 0, x(a) ,  y(a)  and some u(a)  E R el satisfy the 
following Karush-Kuhn-Tucker conditions for (18) 

0 <_ y .L N T 0 - N  T y + - >_ O. (20) 
u M N 0 u q 

The linear complementarity problem (20) has a vertex solution ([16], Lemma 2) 
and hence a basic solution, for each a > 0. Since (20) has a finite number of bases, 
it follows that on the set {a[a _> (~}, for some ~ > 0, only a finite number of basic 
solutions of (20) appear infinitely often, and no other basic solution appears a finite 
or infinite number of times. Let the (2~1 + g2) • (2gl + g2) matrices 

B 1, B 2 , . . .  ; B e, (21) 
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correspond to these basic solutions and such that 

y(0/) = B  i - , for s o m e i E { 1 , . . . , g } ,  0/_>6. 
~(0/) q 

It follows from Theorem 2.8 of [17] by letting 0/--+ (x), that 

 orsome   i, 
B 2 ' . . .  

(22) 

(23) 

solveI PEC 13,  isestab, ishes 17) wit,, [b :l = [ ; i ]  an,, 

given by (23). 
To establish (19) we employ Theorem 2.8 [17] again which states that 

lim 0/x(0/)(Mx(0/) + Ny(0/) + q) = O. 
Oz ..--+ ( X )  

Since 

aigi aih i + x i . i  
x(0/l(Mx(0/)  + Ny(0/) + q) = 0/--U + o~ 

0/ 
+ X~o h', 

where 

a s  

(24) 

i 6 {1, . . . ,g} (25) 

g i : = M a  i + N b  i, h i := Mx~o + Ny~ +q,  i E { 1 , . . . , g } .  

It follows from (24) and (25) that 

x~h i = O  and aih i + x i - i  o9 = 0 ,  i E { 1 , . . . , g } .  (26) 

Combining (25) and (26) gives (19). Equation (19) shows that the complementarity 
residual decreases quadratically with increasing penalty parameter values. [3 

With the help of Theorem 3.2, an exact solution of LPEC (13) can be recovered 
from (23) as follows. 

COROLLARY 3.3. Let 0/2 > 0/1 ~ ~ > 0 be such that the corresponding solutions 
(x(0/2), Y(0/2), u(0/2)) and (x(0/1), Y(0/1), u(0/1)) of(22) have the same basis. 
Then (X~o, u~) solves LPeC (13) where 

Xg = 0 / 2 X ( 0 / 2 )  - -  0 / l X ( 0 / 1 )  

0/2 - al  (27) 

u~ = 0/' ,y(0/2) - 0 / ly (0 /1 )  
0/2 - -  0/1 (28) 
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Proof. From (17), since a2 and a l  generate solutions with the same basis it 
follows that 

a i 

X(al) = - -  + x~ (29) 
or 1 

a i 

x(a2) = - -  + x~}. (30) 
0~2 

Subtracting (29) from (30) and solving a i we get 

x ( , , 1 )  - x ( a 2 )  
a i = ot 10~ 2 

ot 2 - -  o q  

Substituting for a i in (29) gives (27). The expression (28) for Y0 is similarly 
obtained. In 

Corollary 3.3 is useful in obtaining an exact solution of LPEC (13) by monitoring 
repeated bases for a > 5, and using (27)-(28) to get the desired solution. Therefore, 
it remains to prescribe an algorithm for solving the penalty problem (18) for 
sufficiently large. We propose a Frank-Wolfe algorithm [10, 6] for solving (18) 
similar to that employed in [5]. This approach was quite successful in solving the 
nonconvex bilinear separability problem on many test cases [5]. For completeness 
we give the algorithm here. For convenience, however, we first define P(z ,  a) as 
the penalty function of (16), that is 

(x) P(z ,  o O : = c x + d y + a x ( M x + N y + q ) , z - -  . 
Y 

(31) 

ALGORITHM 3.4. Frank-Wolfe Algorithm for  Solving (18). Fix ~ > O. Start with 
any z 0 E S ~ Determine zJ + l from z j as follows. 

�9 ~J E arg vertex min V z  P ( z  j ,  a )z  
z E S  o 

�9 Stop if V z P ( z  j,  a)(~J - zJ) = 0 

�9 z j+l = (1 - AJ)z j + Ad~ ~, where M e arg min P(((1 - A)z j + A~J), o~) 
0 < A < I  

Convergence of this algorithm is established in [5] without any convexity assump- 
tion on P(z ,  a). We state this convergence result without proof here. 

THEOREM 3.5. Convergence o f  Frank-Wolfe Algorithm. Algorithm 3.4 termi- 
nates at some zJ that satisfies the minimum principle necessary optimality condi- 
tion: v ~ P(  z j , a) ( z - zJ ) >_ O for  all z E S ~ or each accumulation point ~ o f  the 
sequence { z j } satisfies the minimum principle. 
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4. Linear Programs with Uncoupled Equilibrium Constraints 
(LPUEC) 

In this section we specialize the general LPEC (13) to the case of uncoupled 
equilibrium constraints, that is 

minimize ClX 1 -1- C2X 2 -[- d l Y l  + d2Y2 
x,y 

/12X2 q- NllYl q- ql _> 0 
M21Xl + N22Y2 + q2 _> 0 (32) 

subject to xl(ml2x2 -~- Nl ly l  ~- ql) :-- 0 
xz (M21x l  + N22y2 q- q2) : 0 

Xl~ x2~ yl ~y2 ~ 0 

We note immediately that (32) includes our misclassification minimization problem 
(12) if we rewrite the latter as follows 

minimize er + es 

s.t. 0 

(0 0,0Ae 
0 O O I - B  e 

_1_ - I  0 O 0  0 0 

0 - I 0 0  0 0 

( r ~  
s 

- A e  + e ~ u 

B e  - e ) 0 v 
t 

0 5 

(t, _> 0 
- - e  

- e  > 0. 
q- e - 

e 

Here we have used the substitution 

as was done in (14). We take in (32) 

(') 
We note that consequences of the uncoupled LPUEC (32) include the following: 

(33) 

(i) An exact penalty formulation which is explicit. That is, an exact solution is 
obtained for any sufficiently large value of the penalty parameter a without 
regard to a repeated basis, as was the case in Corollary 3.3. 
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(ii) A stepless partial Frank-Wolfe Algorithm 4.2 will terminate in a finite number 
of steps at a stationary point of the penalty problem or at a global solution 
of (32). This is an improvement over the stepless full Frank-Wolfe algorithm 
proposed for the linear Stackelberg problem, a special case of (32), with an 
exact penalty also, but where each linear program was solved completely [2]. 
Our experience with partial solution of the linear programming subproblems 
for the closely related bilinear programming problem [5] leads us to believe 
that partial solution of the linear programming subproblems is preferable espe- 
cially when one is far from a solution point or stationary point, and the linear 
subproblems are merely crude surrogates for the nonlinear problem. 

(iii) No boundedness of the feasible region is needed for exactness of the penalty 
function, as was required in [2], for the linear Stackelberg problem and in 
[13] for the MPEC, nor a constraint qualification as needed in [13]. We now 
formulate the penalty problem (18) associated with (32) and note its key dis- 
tinguishing feature that its feasible region So consists of uncoupled constraint 
regions SOl and So2. In particular, we have 

(x(a), y(a)) 6 arg min P((x,y),c~) 
(x,u)eSo 

(34) 

where 

X ~  
X2 ~ y --  Y2 c2 , d = d2 ~ q = q2 ' 

( 0 M 1 2 )  N:  (Nll 0 ) 
M =  m21 0 ' 0 Nz2 

(35) 

P((x,y) ,a)  := cx + dy + ax(Mx + Ny + q) (36) 

S := {(x,y)lMx + N y +  q > O, (x,y) > O, x(Mx + N y +  q) = O} (37) 

S0 : =  S01 x S02 

S01 := {(xz, yl)lM12x2 + Nnyl + ql ~ 0, (X2, Yl) :> 0} 

S02 := {(xl, y2)[M21xl + N2zY2 + q2 > 0, (Xl, Y2) > 0}. 

(38) 

We show first that as a consequence of the fact that So = S01 • S02, the penalty 
problem (34) always has a vertex solution and that for sufficiently large.a, an exact 
solution of LPUEC (32) is obtained. 
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THEOREM 4.1. Explicit Exactness of LP UEC Penalization. Let LP UEC (32) have 
a nonempty feasible region S, and let its objective function be bounded below on 
So. Then 

(i) LPUEC (32) has a solution which is a vertex of So. 

( ii) For a >_ ~ for some ~ > O, the penalty function P(., a) attains a minimum 
on So at (~, ~) which is a vertex of So, and every such vertex is a solution of 
LPUEC (32). 

Proof Note that (ii) implies (i) and hence we need only establish the latter. 
We establish firstthat min P((x ,  y), a)  has avertex solution foreach a > 0. 

(x,y)ESo 
Since cx + dy is bounded below on So by assumption, and x ( M x  + N y  + q) >_ 0 
on S0, it follows that the quadratic penalty function P((x ,  y), a) has a minimum 
solution (~(a),  ~7(a)) in the polyhedral set So for a >_ 0 [10]. Hence the linear 
program 

min P(((~l(a) ,x2) ,  (yl, y2(o~))), O 0 
(x2,Yl)CSOI 

has a vertex (x2(a), Yl (o0) of S01 as solution and such that 

P(((Xl(a),x2(a)), (yl(ot),y2(o0)), o 0 = e((~(o0,ff(o0) ,o 0. 

Similarly, the linear program 

min P(((Xl,X2(OO) , (yl (o0, y2)), ce ) 
(xl,y2)~So2 

has a vertex (x l (a) ,  yz(a)) of $02 as solution and such that 

P(  (x(oO, y(a) ), a ) = P(  ('Z1(ce), x2(ot), yl (oO, f12(oO ), oO ---- P((g.(a) ,  z3(a)), o 0. 

Hence ((x2(a),  y l (a) ) ,  (Xl(a), y2(a))) is a vertex of $01 x S02 and consequently 
a vertex solution of min P((x ,  y), a). 

(x,y)es0 
We now establish exactness of the penalty problem min P((x ,  y), a). Since 

(x,y)CSo 
So has a finite number of vertices, one vertex, say (~, ~) will satisfy 

(X,~7) E argvertex min P ( ( x , y ) , a )  a > ~ > 0 
(x,y)eSo 

for some ~ > 0. By Theorem 2.5 [17] we have that 

~(MY~ + N y  + q) = 0. 

Consequently, for all (x, y) E S and o~ _> 

c~. + d~ = P((~., ~), a) < P((x ,  y), a) = cx + dy. 
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Hence (X,, 9) solves LPUEC (32). [3 

We now give a finite algorithm for solving LPUEC (32) that terminates either at 
a global solution or a point satisfying the minimum principle necessary optimality 
condition [15] for min P((x ,  y), a). The algorithm consists of partially solving 

(x,u)eSo 
a succession of linear programs, and as such can be considered as a stepless Frank- 
Wolfe algorithm [10]. The ideas are similar to those of Algorithm 2.1 [5] for 
separable bilinear programs. 

ALGORITHM 4.2. Stepless Partial Frank-Wolfe for LPUEC (32). For a > 0 
start with (x 0, yO) E S. Determine ( x i+ l, yi+ l ) from ( x i, yi ) as follows: 

(x~+l,y~ +1) e argvertex partial min P(((x~,x2),(yl,y~2)),a) 
(x2,yl)es01 

(Xil+ 1 y i + l ~  2 J e argvertex partial min P(((  xi,xi+l~2 J' (Y~+I'y2)) 'O~) 
(Xl,Y2) ES02 

and such that P(  (x i+1, yi+l), o~) < P( (x i, yi), a).  Stop when impossible. 

In the above, "arg vertex partial min" denotes the set of vertices of the 
respective feasible regions that give a value of the objective that is no greater 
thanP(((x~,xiz), i i a P(((x~, i (Y l ,Y2) ) , ) and  x~+l), (Y~ +1' Y2))' a),  respectively. We 
establish now finite termination of Algorithm 4.2 

THEOREM 4.3. Finite Termination of Algorithm 4.2. Let LPUEC (32) have a 
nonempty feasible region S, and let its objective function be bounded below on 
So. For c~ >_ 6~ for some 6~ > O, Algorithm 4.2 terminates in a finite number of 
steps at a solution of  LP UEC (32) or at a point ( xi ,  x i~ + 1,.1tli+ 1 ' ~21  " ,i ~ that satisfies the 
minimum principle necessary optimality condition [15]for rain P(  (x, y), a) : 

(~,y)ESo 

P(((x~,x2), (yl,y~)),O~) >-- Ptrrxit~t ,, xi+'~2 J, (Y~@I'Y~)), a) 
<_ P(((Xl,Xi2+i),(y~+l,y2,)) ,a),V(x,y) E So. (39) 

Proof. If for some i, P((x i+l ,y i+i) ,a)  r P((xi ,  y~),a), then each of the 
two linear programs of Algorithm 4.2 must have been solved to optimality, and 
P(((x~,x2) ,  (Yl,Y~)),~) _ > P((xi ,Yi) ,  ~) = P(((x{,  xi+1~2 ,, (yli+I, Y2)),i o~) = 
P((xi+l,yi+i),o~) < P(((xl,xi2+i), (y~+i,y2)),c~),V(x,y) E So. From this the 
minimum principle (39) follows: Since there are a finite number of vertices of So = 
S01 x S02, and since for each vertex visited by Algorithm 4.2 the penalty function 
P((x ,  y), ~), strictly decreases, no vertex of So is repeated. Thus, Algorithm 4.2 
terminates at [x i ,,,i+l ~,i+1 y~) which is either a global minimum of P((x ,  y), o~) 
on So or (xi,x~+l,y~ +1, y~) satisfies the minimum principle (39). In the former 
case, it follows by Theorem 4.1 that (x~, xi+12 , y~+l, y~) solves LPUEC (32). D 
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We return now to the misclassiftcation minimization problem (12). Curiously, it 
turns out that the penalty function (36) for (12), is stationary on So for almost 
any (w, 7) defining the plane (1) and appropriately chosen (r, u, s, v). We skip the 
algebra that shows this, but give an intuitive justification of this curious fact. This 
may also explain why optimization algorithms, including the classical backpropa- 
gation algorithm of neural networks [12], may be slow when applied directly to the 
misclassification error function of (6) or the equivalent formulation (12), instead 
of the parametric quadratic minimization (40) proposed below. Suppose that the 
plane w x  = 3' does not pass through any of the points of either set .A or B. A 
small perturbation in either w or 3' or both will not change the number of misclas- 
sifted points. Hence for such (w, 3') and its perturbation, the constraints of (12), 
which merely generate r and s that count misclassifications, remain satisfied by 
the perturbed (w, 3') and some corresponding (r, u, s, v), but the objective function 
ev + es  remains constant. Thus (w, 3") is stationary. To avoid this difficulty we 
consider the following parametric reformulation of problem (12) 

minimize ~ [ r ( A w  - e3" - e) + eu] + l [ s ( - B w  + e7  - e) + ev] 

u + A w  - e T -  e >_ O v - B w  + e 3 " -  e > O 

r > O  s > O  
- r  + e > 0 - s  + e > 0 (40) 

subject to 
u_>O v_>O 

er  + es  < 5 

5 e  

Here the weights ~ and ~ are used to average the complementarity condition over 
the cardinalities m and k of the sets Jt and B respectively. This is motivated by 
the fact that when 5 = 0, problem (40) reduces precisely to problem (2.11) of [4] 
which is guaranteed to generate a non-null w that will minimize the average of 
the distances of misclassified points (assuming II A~ 112= 1, II /33 112 = 1, i = 
1 , . . . ,  m, j = 1 , . . . ,  k). Note that problem (40) is solvable for each 5 E [0, c~), 
because its quadratic objective is bounded below on its nonempty feasible region 
[ 10]. Furthermore f (5), the nonnegative minimum value of (40), is a nonincreasing 
function of 5 that decreases to zero at 5 = 5, for some 5 _> 0, which is the global 
minimum of problem (12). This is so, because the objective function of (40), which 
consists of the complementarity constraints of (12), becomes zero first at some 5, 
the smallest value of 5, for which the constraints of (12) are satisfied and er  + es  is 
minimized, thus giving the smallest number of misclassified points. Hence problem 
(12) is reduced to solving problem (40) for 5 = 5, the smallest nonnegative root of 
f ( 5 )  = 0, that is 

= min {5 I f(5) ---= 0}. (41) 
~>0 

Obviously if 5 = 0, then the sets .,4 and B are linearly separable and no points 
are misclassified. Our proposed procedure is to solve (40) by Algorithm 4.2 for 
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increasing values of t~ until f(~) = 0. A one dimensional secant method [8] for 
finding a nonnegative root of f(6)  = 0 may be helpful. We note that f (6)  = 0 for 
~_>~. 

5. Conclusion 

We have formulated the problem of minimizing the number of misclassified points 
by a plane attempting to separate two point sets in R ~ as a problem of minimizing a 
nonconvex quadratic function subject to linear inequalities. The quadratic program 
is either a penalty problem with a finite value of the penalty parameter obtained 
from a linear program with equilibrium constraints (LPEC), or a parametric non- 
convex quadratic minimization problem with linear constraints. Our exact penalty 
formulation of the general LPEC, both with coupled and uncoupled constraints, 
require no assumptions on the problem other than feasibility and boundedness from 
below on the objective function. These assumptions are automatically satisfied by 
the LPEC associated with the misclassification minimization. 

When the constraints of the LPEC are coupled, our exact penalty formulation 
(16) requires some calculation to obtain an exact solution to the original LPEC. 
However, when the constraints are uncoupled as in (32), which is the case for the 
misclassification minimization problem (12), our exact penalty (16) directly yields 
an explicit solution to the LPEC for a finite value of the penalty parameter. The 
method that we propose for solving the misclassification minimization problem is 
the linear-programming-based Algorithm 4.2, applied to the parametric quadratic 
program (40) as a bilinear program. We think that this effective approach for 
solving the misclassification minimization problem is worthy of further study and 
numerical testing. 
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